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Answer all questions.

01.(a)   Show that every vector space has a Hamel basis.






(OR)

            Prove that a subset S of a vector space X is linearly independent ( for every 
            subset {x1, x2, …, xn​} of S,  (aixi = 0 ( ai = 0, for all  i.

(5)

     (b)(i)  Show that every element of X/Y contains exactly one element of z, where Y 
                and z are complementary subspaces of X.

         (ii)  If Z is a subspace of a vector space X of deficiency 0 or 1, show that there is 
                an f ( X* such Z = Z(f).





(7 + 8)






(OR)

         (iii) Let X be a real vector space.  Let Y be a subspace of X and p be a real 
                valued function on X such that p(x) ( 0, p(x + y) = p(x) + p(y) and                             
                p(ax) = a(Px) for a ( 0.  If f is a linear functional on Y such that                        
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 ( p(x) for every  x ( Y, show that there is a linear functional F on X 
               such that F(x) = f(x) on Y and 
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02.  (a)  State and prove F(Riesz Lemma.






(OR)

              Let X and Y be normed linear spaces and let T be a linear transformation     
              of X into Y.  Prove that T is bounded if and only if T is continuous.  (5)

        (b)  State and prove the Hahn Banach Theorem for a complex normed linear 
              space.






(OR)

              Let X and Y be normed linear spaces and let B(X,Y) denote the set of all 
              bounded linear transformations from X into Y.  Show that B(X, Y) is a 
              normed linear space and B(X, Y) is a Banach space, if Y is a Banach space.

           









    (15)

03.   (a) State and prove Riesz Representation Theorem.






(OR)

              Prove that a real Banach space is a Hilbert space iff the parallelogram law 
              holds in it.







    (5)

        (b) State and prove the Projection Theorem.






(OR)

              If X and Y are Banach spaces and if T is a continuous linear transformation 
              of  X onto Y, then prove that T is an open mapping.                            (15)

04.  (a)  State and prove Bessel’s inequality.






(OR)

              If T is an operator on a Hilbert space X, show that T is a normal ( its real 
              and imaginary parts commute.




(5)

      (b)(i) If T is an operator in a Hilbert space X, then show that

               (Tx, x) = 0  ( T = 0.

          (ii)  If N1 and N2 are normal operators on a Hilbert space X with the property 
                 that either commute with adjoint of the other, prove that N1 + N2 and N1N2 
                 are normal.
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(OR)

         (iii) State and prove Riesz(Fischer Theorem.



(15)

05. (a)   Prove that the spectrum of x, 
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(OR)


  Define a Banach algebra A, set of regular elements G, set of singular 
              elements S, and prove that G is open and S is closed.

(5)

      (b)   State and prove the Spectral theorem.






(OR)

              Let G be a set of regular elements in a Banach algebra A.

(5)


  Prove that f : G ( G given by f(x) = x(1 is a homeomorphism. 
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